Chapter 3
 Fault Simulation

Arnaud Virazel
virazel@lirmm.fr

Objectives

- To determine the circuit behaviour in presence of each of the faults
- To determine the set of faults detected by a test vector sequence

Fault Simulation flow

-

Constraints

- Circuit description
- Functional, structural
- Fault models
- Stuck-at, bridging, delay ...
- Coding
- Two values $(0,1)$
- Three values $(0,1, X)$
- Four values ($0,1, \mathrm{X}, \mathrm{Z}$)

Constraints

- Timing
- Zero-delay \rightarrow No delay considered during the simulation
- Unit-delay \rightarrow A delay is associated to each gate

Fault Simulation Techniques

- Serial fault simulation
- Parallel fault simulation
- Deductive fault simulation
- Concurrent fault simulation

Serial Fault Simulation

- A golden circuit simulation + n independent simulations of the n faulty circuits (for n considered fault)
- Pros:
- Simple. Does not require the development of a specialized fault simulator. Can be implemented from a classic logic simulator.
- Able to simulate any type of fault that can be taken into account by the logic simulator.
- Low memory space requirement
- Cons:
- Very slow ($n+1$ consecutive simulations for a list of n faults)

Exercise

- Determine the faults detected by the vectors: $V(a, b)=(1,1)$ et $(0,0)$

Parallel Fault Simulation

- Principle
- Takes advantage of parallel (per-word) processing of binary information in computers
- If the host computer manipulates n-bit words, the golden circuit and the $\mathrm{n}-1$ faulty circuits can be simulated in parallel
\Rightarrow The number of faults considered during a simulation depends on the length of the computer words
\Rightarrow Fault simulation performed in some phases
- Each circuit net is associated with a n-bit words
- The first bit represents the logic state of the golden circuit
- Each other bit represents the state of a faulty circuit

Example

Methodology

- Faults are taken into account (or injected) via logic masks
- A Sa1 at net E is injected by "ORing" the word of E and the Sa1_mask
- A Sa0 at net E is injected by "ANDing" the word of E and the Sa0_mask

Sa0 and Sa1 Masks

- Fault injection masks are taken into account when evaluating the output of a gate

AND Gate Example

- ma and $m b$ are the two words assigned to the AND gate inputs (a, b)
- p0 and p1 are the two masks corresponding to Sa0 and Sa1 faults on output c of the AND gate
- Computation of word $m c$ (output of the AND gate)
- $\mathrm{mc}=\mathrm{ma} . \mathrm{mb}$ for the golden gate
- mc = ma . mb . p0 if the Sa0 on c is considered only
- $\mathrm{mc}=\mathrm{ma} \cdot \mathrm{mb}+\mathrm{p} 1$ if the Sa1 on c is considered only
- $\mathrm{mc}=\mathrm{ma} \cdot \mathrm{mb} \cdot \mathrm{p} 0+\mathrm{p} 1$ if both SaF are considered

General Case

Example (1)

- A 5-bit word

Golden	S1 Sa0	S1 Sa1	S2 Sa0	S2 Sa1

Example (2)

- Masks
- $s 1$ Sa0 p0(s1) $=10111 \quad$ s2 Sa0 p0(s2) $=11101$
- s1 Sa1 p1(s1) = $00100 \quad$ s2 Sa1 p1(s2) $=00001$
- Test vector
- $\mathrm{V}(\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3)=110$

$$
m(e 1)=11111, m(e 2)=11111 \text { et } m(e 3)=00000
$$

- Parallel fault simulation
- $\mathrm{m}(\mathrm{s} 1)=\mathrm{m}(\mathrm{e} 1) \cdot \mathrm{m}(\mathrm{e} 2) \cdot \mathrm{p} 0(\mathrm{~s} 1)+\mathrm{p} 1(\mathrm{~s} 1)=10111$
- $m(s 2)=(m(s 1)+m(e 3)) \cdot p 0(s 2)+p 1(s 2)=10101$

Example (2)

- Masks
- $\mathrm{s} 1 \mathrm{Sa0} \mathrm{p} 0(\mathrm{~s} 1)=10111 \quad \mathrm{~s} 2 \mathrm{Sa0} \mathrm{p} 0(\mathrm{~s} 2)=11101$
- s1 Sa1 p1(s1) = $00100 \quad$ s2 Sa1 p1(s2) $=00001$
- Test vector
- $\mathrm{V}(\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3)=110$

$$
\mathrm{m}(\mathrm{e} 1)=11111, \mathrm{~m}(\mathrm{e} 2)=11111 \text { et } \mathrm{m}(\mathrm{e} 3)=00000
$$

- Parallel fault simulation
- $\mathrm{m}(\mathrm{s} 1)=\mathrm{m}(\mathrm{e} 1) \cdot \mathrm{m}(\mathrm{e} 2) \cdot \mathrm{p} 0(\mathrm{~s} 1)+\mathrm{p} 1(\mathrm{~s} 1)=10111$
- $m(s 2)=(m(s 1)+m(e 3)) \cdot p 0(s 2)+p 1(s 2)=10101$
- Fault simulation result
- Golden circuit response \rightarrow s2 = 1
- $\mathrm{V}=110$ detects $\mathrm{Sa0}$ faults on s1 et s2

Exercise

- Test vector $\rightarrow \mathrm{V}(\mathrm{a}, \mathrm{b})=(1,1)$

